Society for Underwater Technology

OFFSHORE SITE INVESTIGATION AND GEOTECHNICS GROUP Bath Rugby Club Wednesday, 25 June 2014

Delivery of an Offshore Wind Farm

An overview of the expectations and challenges of planning, consenting, installing and operating a large (5>MW Turbines) offshore wind farm.

Justin Hawkins, Principal Consultant,

Marine Geomatics Limited

Introduction

- GEODATA MANAGEMENT FOR OFFSHORE WINDFARMS
- MARINE SURVEY EARLY PLANNING
- Planning and Consenting
- Foundations and Turbines
- Cables
- SITE ENGINEERING ADVANCED PLANNING
- Monopile Siting and Jack Up Stability
- Cable Burial Risk Assessment
- INSTALLATION CONSTRUCTION PHASE
- Protecting installed Foundations
- Protecting cables during installation
- Protecting cables for lifecycle of project

Planning and Consenting

Brief Summary (Example Gwynt Y Mor)

- 2002-2003 Planning and Tendering of Round 2 Wind Farms
- 2004-2005 Regional survey data acquisition / FEED Study
- November 2005, Developer submits application
- 2006-2008 Stakeholder discussions/negotiations
- Consent granted December 2008 (3 years and 1 week later)

Typical Timelines for future projects:

- Renewable UK Offshore Wind Project Timelines May 2014
- Multiple year consenting process
- Financial Investment Decision; 1-2 years before construction
- Technology and resources are the projects possible?

Planning and Consenting

Source: RenewableUK

Gwynt Y Mor Windfarm

- 4 Export Cables linking 2 offshore substation platforms (OSP)
- 20-22km in length
- 162 Array Cables linking the 2 OSP with 160 monopile turbines
- Typically 1km in length
- Water depths 0m to 30m
- Varied seabed terrain
- Existing infrastructure
- (pipelines, cables, windfarms)
- Surveys 2002-2013
- Construction 2012-2014

Marine Survey Data for Offshore Wind Farms

What types of Data?

How is it collected?

- GEOPHYSICAL
- Regional/area survey low to medium resolution turbine planning
- Cable Survey medium resolution export & inter-turbine areas
- UXO Survey high resolution export and array cables
- GEOTECHNICAL
- Boreholes at foundations, OSP and metmast locations (40m+)
- CPT at turbine foundations 5m+
- CPT for cable routes top 0-3m
- Vibrocores/sampling for sediment classification (top 0m-3m)

Survey Data for Offshore Wind Farms

GEOPHYSICAL

- Seabed Conditions Hazards, sediments, hardness, mobility
- Bathymetry water depth, slopes, tides, (currents)
- Equipment survey vessel sidescan sonar, echo sounder, sub bottom profiler, shallow seismic, magnetometer, sampling

Survey Data for Offshore Wind Farms

- GEOTECHNICAL
- Soil Conditions composition, hardness/softness, layers
- Equipment Drill Jack Up/Vessel Borehole Drilling, Cone Penetrometer Testing, Vibro-coring, drop coring, grab sampling
- Lab Testing further testing of soil characteristics

Survey Data for Offshore Wind Farms

OTHER SURVEY DATA SOURCES

- HISTORICAL DATA
- Cable Databases / Oil & Gas Concessions
- UKHO charts
- 3rd Party Datasets (academic, government and commercial)
- DURING CONSTRUCTION
- Diver Swim Investigations (rock dump and aperture areas)
- Pre Survey ROV survey (cable route and lay down areas)
- Post lay inspection and bathymetry surveys (cables/rock dump)
- Detailed UXO surveys (2014 after 3 x WW2 bombs discovered)

Survey Data Acquisition on GYM

DATA SOURCE DIAGRAM

- » sidescan sonar
- » sub bottom profiler
- » shallow seismic
- » single beam bathymetry
- » multibeam bathymetry
- » coring
- » grab sampling
- » magnetometer
- » towed gradiometer
- » ROV gradiometer
- » AUV hi res sidescan

Survey Data Management

DATA HANDLING - creating a unified mapping database

Seabed bathymetry

Sediments

Seabed Hazards (boulders, wrecks, UXO)

Infrastructure (pipelines, cables, buoyage)

Boundaries (permits, shipping zones etc)

Planned construction (foundations/cables)

Temporary infrastructure (jack-ups etc)

As built construction (foundation, topsides, cables)

- CAD and GIS DATABASES
- Evolving as works continue

Cable Burial Assessment: Data Usage

- CHART SERIES
- 1:15000 OVERVIEWS
- 1:3000 ANCHOR PLANNING
- 1:500 TURBINE FOOTPRINTS
- DATA FORMATS:
- CAD
- GIS (SHAPE DATA)
- PDF (CAN BE VIEWED BY ALL)
- DIGITAL BUT CAN BE PLOTTED

Lessons Learned: Survey

- Good survey data is required to select appropriate cable burial methodology and equipment
- Early planning of cable routes, orientation of turbine connections
- Consideration of data coverage to accommodate anchor patterns
- Educating the end user on data suitability, resolution and data deficiencies/shortcomings
- Ensuring project flexibility to collect additional survey data when needed
- Standardise mapping and vertical reference datums

Lessons Learned: Installation

- Good quality survey data is vital for safe installation
- Engage with construction contractors early in project lifecycle
- Design cable routes with flexibility for different burial tools
- Carefully consider the threat level vs difficulty of installation
- Ensure lessons learned are passed on to other projects
- We are still installing, there will likely be more lessons!

Conclusions:

- GYM generated first power in September 2013
- Construction to be completed 2014 (turbines), early 2015 (cables)
- Remedial works will be required on array cables
- High scour area seabed monitoring will be required across site
- Expect the unexpected. We discovered 3 WW2 bombs on site

THANK YOU, ANY QUESTIONS?