Application of Oceanographic Drift Models

Charitha Pattiaratchi
School of Civil, Environmental and Mining Engineering
The UWA Oceans Institute
The University of Western Australia
Acknowledgements

Dr Sarath Wijeratne
Dr Ivica Janekovic
The University of Western Australia

James Holder & Lucya Roncevich
Department of Transport, WA

Pawsey Supercomputing Centre
Tracking parcels of water

Advection

1. Initial state
2. After advection
3. Final state

Advection + Diffusion

1. Initial state
2. After advection
3. After diffusion
4. Final state
Surface Drift Dynamics

Environmental Forcing:
- Winds
- Tides
- River inflow
- Surface Heat Flux

Ocean Response:
- Wind Waves
- Vertical Mixing
- Depth Dependent Currents
- Density Stratification

Drift Response:
- Stokes Drift
- Direct Windage/Leeway
- Adveected by near-surface currents
Drift Modelling

Atmospheric Model
Wind, temperature, precipitation, air-sea fluxes

Wave model
Stokes drift
Wave momentum

Ocean circulation model
Currents, temperature, salinity, turbulence

Particle tracking model
Water mass, debris, sediment, larvae, turtles, wrack, oil/chemical spills, search & rescue

Gnome
response.restoration.noaa.gov

Ichthyop
www.ichthyop.org
Drift Modelling: wind effects

- Wind
- Ocean Surface

Low wind vs storm

Depth

Graph showing:
- $u_w(z=0) = 2.73\%$
- $u_s(z=0) = 0.27\%$
Drift Modelling: Stokes drift

Mass transport due to waves

\[u = U_s \]
Drift Modelling: wind effects

- Surface drift due to the wind: 2 - 3% of U_{10}
- The Ekman currents at the surface strongly depend on the vertical mixing K_z: 0.5 to 4% of U_{10}
- Stokes drift of waves of same magnitude order: 3% of U_{10}
Windage

Wind

Low windage, object sitting deep in water
Medium windage, object sitting half in water
High windage, object sitting high on water

For example 5% windage means an object is moving with the current + 5% wind speed
Leeway divergence

- Leeway divergence transports objects at an angle relative to downwind.
- Symmetry allows stable drift left and right of downwind (little jibing is observed).

→ Diverging search areas with time.
Demo: initial conditions
Demo: advection by currents
Demo: advection by wind
Demo: advection by wind/currents
Demo: advection by wind/currents
Demo: advection by wind/currents
Demo: advection by wind/currents
Shark Bay: 2000

[Map showing distributions with symbols for years 1997, 1998, 1999, and 2000, and a graph with 500 random particles released at t=0.]

Model Run bc4 - bottom tracking

Hour no. 1

20 40 60 80

160 140 120 100 80 60 40 20
Particle Tracking (‘Age’)
Peddies: 3 August 2011

Petite eddies (diameter < 25km)
Peddie – 3 August 2010

Southern Surveyor Voyage
Peddie – 3 August 2010

Temperature

ADCP currents
Northern Indian Ocean

30-Aug-2011
Port Geographe

Location & Concept Plan
Location & Concept Plan

Sand transport

Sand trap

Bypass
Location & Concept Plan
The Problem
The Problem

Oldham et al., 2010
Seagrass Wrack

Oldham et al., 2010
No detailed information available on wrack dynamics

Observations: Wrack present on beaches from May to October
Naturally ‘disappear’ in October/November

Hydrodynamics: Mode of transport (suspended/bedload ?)
Settling velocity ?
Critical shear stress ?

Stage 1 Study:
Wrack ‘life-cycle’

‘Summer’ - quiescent period.
Wrack accumulates offshore in meadows and adjacent un-vegetated areas.

‘Winter’ - storm period.
Wrack is moved into surf-zone & beach. Whilst in the surf-zone, subject to long-shore transport.

Late Winter/Spring.
Wrack is removed from naturally from the beaches.
Particle conceptual model

Resuspension

Transport (Currents, Stokes drift, Diffusion)

Deposition (when $z_p \leq z_o$)

- Beach accumulation (τ_c increase and $w_s = 0$)
- Resuspension from the beach (w_s decrease back to initial)
Bathymetry: existing/proposed
Wrack transport

Port Geographe

19-May-2009 00:30:00

Northing (m)

Easting (m)
Post construction

Construction completed in June 2014: ~ $27 million
Search for MH370

Disappeared on 8 March 2014
MH370: initial search areas
Search for MH370
Predictions: August 2014
Predictions: August 2014

Debris simulation (months)
- 0-6
- 6-12
- 12-18
- 18-24

Search area

8 March 2014:
MH370 departs Kuala Lumpur

Source: Professor of Coastal Oceanography, Charitha Pattiaratchi
School of Civil, Environmental and Mining Engineering & UWA Oceans Institute
MH370: simulations

Pawsey Supercomputing Centre
MH370: simulations

Loc01

- 08 March 2014 to 01 Sep 2014
- 01 Sep 2014 to 01 April 2015
- 01 April 2015 to 28 July 2015
MH370: simulations

Loc18

- 08 March 2014 to 01 Sep 2014
- 01 Sep 2014 to 01 April 2015
- 01 April 2015 to 28 July 2015
MH370: simulations

Loc25

- 08 March 2014 to 01 Sep 2014
- 01 Sep 2014 to 01 April 2015
- 01 April 2015 to 28 July 2015
Drifter positions 18 Mar 2014