The Technical & Practical challenges of FLNG

Jeff Baker – Energy Compliance Technical Manager, Australasia
The Technical & Practical challenges of FLNG
Lloyds Register’s role in FLNG

- Prelude - world’s first Floating LNG Project.
 - FEED design review at generic & project specific concept stage,
 - Verification, Certification, Classification and Validation services.

- Supporting publications including:
 - Surveys by ROV,
 - Risk based inspection for hull structures,
 - Risk based analysis for cryogenics spills,
 - Fire loading and protection,
 - Calculation of probabilistic explosion loads,
 - Technology Qualification.
Access stranded gas, using:

- Floating offshore or near shore structure permanently moored
- Subsea wells, via flowlines and risers (or other incoming supply)
- Fractionation and cleaning modules
- Liquefaction (refrigeration)
- Storage – LNG, LPGs and condensate (oil)
- Offloading - tandem or side by side
The Challenge

Combine new technologies, codes, standards and practice from three industries.

- Marine LNGCs
- Floating Offshore Installations
- Land based liquefaction

Complex supply chain

Significant new IP

Harsh environment
FLNG Design Issues

- New concept => risks associated with:
 - Process (restricted footprint versus land plant)
 - Vessel motions - effect on process plant
 - Process plant reliability (limited line pack available)
 - Storage of large quantities of process chemicals
 - Potential production and storage of multiple liquid and gas types
 - Managing Cryogenic fluids in proximity to large, critical hull structures
FLNG Design Issues

- Sloshing (dynamic loading of LNG CCS through filling range)
- Vessel strength and fatigue at fixed offshore location for (long) on station design life in harsh environments (e.g. Cyclone areas)
- Cooling water demands – uptake and discharge
- Very high Topsides – hull – turret loads
- Ballast tank hydrostatic head design issues
- Stationkeeping for offloading (tandem or side by side?)
- High mooring interface loads between FLNG and LNGC
- Very HV Power Generation and control - voltages beyond normal floating offshore and marine practice
- Fire and Blast challenges
- Dynamic Offloading Systems
- Regulatory issues
Challenges of Scale

- Largest floating offshore facility in the world
- Production from 2 MTPA to in excess of 6 MTPA
- Deck size more than 4 football fields
- Hull/substructure:
 - Deck area equivalent of four typical FPSOs
 - Volume equivalent of eight typical FPSOs
- Topsides facilities – four to five tiered modules over the same deck area + accommodation block and turret
- Operating weight is six times largest aircraft carrier
- One quarter size of onshore equivalent plant
- Equipment stacked vertically for space optimisation
- Cargo liquids containment capacity of 175 olympic size swimming pools
- All operating permanently offshore in depths of water from 100 to over 1000 metres

Image courtesy of Shell Australia
Size and scale versus current practice

- LNGC 50 m x 30 m
- LNGC 330 m
- Oil FPSO 60 m x 40 m
- Oil FPSO 330 m
- FLNG 75 m x 45 m
- FLNG 480 m
The Technical & Practical challenges of FLNG

Loads due to offshore outfitting

- Turret bearings
- Crane pedestals
- Lifeboat platforms
- Helideck
- Topside plant
- Flare stack
Topsides Layout and Loads

- Oil FPSO topsides – up to 40,000 tonnes?
- FLNG topsides – up to 90,000 tonnes?
- FPSO Module total typically 4,500t max, static reaction loads up to 1,250t, dynamic 2000t
- FLNG Liquefaction modules total 25,000 to 30,000t, dynamic reaction loads up to 4,000t
Comparison of marine containment systems

<table>
<thead>
<tr>
<th>Membrane</th>
<th>Moss</th>
<th>SPB</th>
</tr>
</thead>
<tbody>
<tr>
<td>- No cool-down rate limit</td>
<td>- Less chance of damage by mis-operation</td>
<td>- Same as Moss, but:</td>
</tr>
<tr>
<td>- Good visibility from bridge</td>
<td>- Primary barrier fully gas-tight</td>
<td>- Good visibility from bridge</td>
</tr>
<tr>
<td>- Space efficient</td>
<td>- Visible secondary barrier</td>
<td>- Flat deck area is potentially beneficial for FLNG</td>
</tr>
<tr>
<td>- Flat deck area is potentially beneficial for FLNG</td>
<td>- No barred fill ranges</td>
<td>- Prefabricated, possibly offsite</td>
</tr>
<tr>
<td>- Design company available for in-service advice</td>
<td>- Easier access for repair</td>
<td>- More space efficient than Moss</td>
</tr>
<tr>
<td>- Complex - Integrity of containment system depends on quality from many sub-contractors</td>
<td>- Expensive build facilities at shipyard</td>
<td>- In-service experience limited</td>
</tr>
<tr>
<td>- Potentially vulnerable to partial fillings - sloshing damage</td>
<td>- Domed tanks give poor deck area for FLNG and bridge visibility issues</td>
<td></td>
</tr>
</tbody>
</table>

The Technical & Practical challenges of FLNG
Marine LNG Containment Systems suitable for FLNGs

Membrane Systems

- GTT Mark III
- GTT NO96

Independent Tanks

- Prismatic (SPB)
 - Stainless steel
 - Aluminium alloy
 (Also used for LPGs)

Source: IHIMU
Offloading Systems

- LNG
 - Side by side
 - Tandem Over-the-stern
 - Remote
- LPG
 - As LNG
- Condensate
 - Hose reels
 - Floating hoses over-the-stern

The Technical & Practical challenges of FLNG
Safety aspects - Cryogenics

• Trading gas carriers - Only manifold section needs to be considered:
 • Used periodically with loading arms connected and disconnected in benign conditions

• FLNG more complex - LNG rundown into storage tanks and liquefaction processes in constant use and at cryogenic temperatures
ANY QUESTIONS?

Jeff Baker,
Energy Compliance Technical Manager, Australasia

1st Floor, 503 Murray Street, Perth WA 6000
T +61 8 9318 7300
E Jeff.baker@lr.org