Direct on-seabed sliding foundations
(A.K.A. “slippery foundations”)

Andrew Deeks
Hongjie Zhou, Henry Krisdani,
Phil Watson, Ray Maujean,
Fraser Bransby

Advanced Geomechanics
andrewd@ag.com.au

SUT-Perth geotechnical evening, 26/2/2014
Presentation Overview

➤ What are they?
➤ Motivation (why?)
➤ Design (how?)
 ● Key aspects
 ● Reliable geotechnical engineering
 ● System integration
➤ Summary
Presentation Overview

► What are they?
► Motivation (why?)
► Design (how?)
 • Key aspects
 • Reliable geotechnical engineering
 • System integration
► Summary
A direct on-seabed sliding foundation

A sliding foundation

Repeated sliding over the seabed

Initial literature
Cathie et al. (2008)
Bretelle & Wallerand (2013)
Presentation Overview

- What are they?
- **Motivation (why?)**
- Design (how?)
 - Key aspects
 - Reliable geotechnical engineering
 - System integration
- Summary
Julimar field*, Apache. www.apachecorp.com

*Just a freely available field layout – no sliding foundations as far as I’m aware.
Motivation – System Example

Pipeline

Pipeline End Termination (PLET)

Spool

Pipeline Termination Structure (PTS)
Motivation – System Example

Repeated axial movement of pipeline during operation

\[\Delta L \]

\[\Delta L \text{ can be 1 m or more} \]

\[\Delta L \text{ repeated 100’s to 1000’s of times} \]

\[\Delta L \text{ a function of:} \]
- Product (e.g. temperature and pressure)
- Pipeline properties (e.g. heat transfer)
- Pipeline design (e.g. buckle design strategy)
- Geotechnics (axial & lateral pipe ‘friction factors’)
PLET Options

Fixed PLET
- Fixed
- Large foundation to ‘anchor’ pipeline expansion

Fixed foundation - sliding PLET
- Pipe
- Spool
- Pipeline support slides on rails
- Pipeline support structure slides on ‘table-top’
- Pre-lay structure (‘table-top’)

Direct on-seabed sliding
- Slides over the seabed
- Maybe in-line installable

Smaller foundation
Presentation Overview

► What are they?
► Motivation (why?)
► Design (how?)
 ◦ Key aspects
 ◦ Reliable geotechnical engineering
 ◦ System integration
► Summary
Key design aspects

- **Capacity and Stiffness**: Sufficient for set-down, tie-in and external loading (e.g. cyclonic)
 - Set-down
 - Spool tie-in

- **Sliding resistance**: Should be minimised
 - Load shedding: Connector overstress

- **Settlement**: Should be minimised
 - Δz
Imposed forces

- Weight (V_z)
- Sliding resistance (H_x)
- Moment (M_{yy}, M_{xx})
Imposed system forces

- Load shedding from PLET may cause overstress.
- System analysis and interaction with pipe engineering teams vital.
Presentation Overview

- What are they?
- Motivation (why?)
- Design (how?)
 - Key aspects
 - Reliable geotechnical engineering
 - System integration
- Summary
Long term settlement focus

- Consolidation & creep
- Plastic sliding deformations
- Shakedown
Soil consolidation & creep

Consolidation
(hours or months?)

Creep
(years or decades?)

Time
Settlement

[Soil densification]
Plastic deformation while sliding

Soil interaction diagram

- Elastic
- Plastic

V1

H

V

ΔL

N_{stroke}

Settlement

[Soy removal]
Plastic deformation while sliding

Soil interaction diagram
Plastic deformation while sliding

Prevented by design: minimised V/V_{ult} and soil-foundation interface strength

[analysis needs to consider VHM loading, Cyclic strength degradation, drainage, N_{eq} etc]

[Soil removal]
Plastic deformation while sliding

Introduction of smoother interface (soil-foundation), extends ‘working’ surface

Prevented by design: minimised $\frac{V}{V_{ult}}$ and soil-foundation interface strength

[analysis needs to consider VHM loading, Cyclic strength degradation, drainage, N_{eq} etc]
Cycle by cycle densification - shakedown

Shear stress, τ, transferred to seabed

Increasing number of cycles

[Soil densification]
Cycle-by-cycle densification – Shakedown

[Diagram showing soil layers and displacement]

[DeJong et al. 2003, 2006]
Shakedown predictions

\[N_{stroke} = 0 \quad \text{and} \quad N_{stroke} = 1000 \text{ (say)} \]

Modelling requires site specific test data and analysis

[shakedown a function of applied shear stress, soil void ratio, compressibility, 'state' c.f. CSL and PTL, movement rate etc.]

Deeks et al. 2014
(OMAE, 2014)
Shakedown predictions

- Cycle-by-cycle settlement assessment
- “Hardening” rule added to existing cyclic strength frameworks
- Prediction based on site specific soil element testing

Deeks et al. 2014 (OMAE, 2014)
Shakedown predictions

Deeks et al. 2014
(OMAE, 2014)
Influence of soil state: example settlement calculations

- **Load** vs. **Foundation Settlement**
- **Depth Below Seabed** vs. **Soil strength**
- Offsets represent consolidation component
- **Settlement limit?**
- **Decreasing load**
- **Nstroke**
- Stronger/stiffer seabed
- Weaker seabed
Presentation Overview

► What are they?
► Motivation (why?)
► **Design (how?)**
 • Key aspects
 • Reliable geotechnical engineering
 • **System integration**
► Summary
System integration & modelling

- Validate pipeline-plet-spool-structure system integrity
- Interaction & iteration between pipeline, geotechnical, and structural team is vital for successful implementation
- Reliable analysis: consider appropriate LE/BE/HE combinations
Presentation Overview

► What are they?
► Motivation (why?)
► Design (how?)
 • Key aspects
 • Reliable geotechnical engineering
 • System integration
► Summary
Summary

- Allowing direct on-seabed sliding can allow for smaller and lighter foundations which are cheaper to manufacture and install.
- Design team interaction is required for successful implementation.
- Shakedown (cycle-by-cycle densification) is typically the dominant cause of long-term settlement (and can be modelled on a site specific basis).
- Opportunities for design method optimisation.

- Other seabed interactions include:
 - Berm build up vs. axial movement history
 - Mobile seabeds (flexible/ moving scour protection)
 - Sand waves

Thanks for listening
& thank you to AG and industry colleagues