SUT
WA Research Night

An introduction to acoustic seafloor observation and geostatistical data interpolation

Elizabeth Mair
BSc (GIS) Honours
Curtin University
Contents

• Project Introduction
• Methodology
• Results
• Direction and discussion
• Questions
Northern Demersal Scalefish Fishery: Acoustic Project

Provide a cheap, low risk and long term monitoring tool for the Department of Fisheries, by:

• Mapping seafloor habitats
• Mapping water column biomass
• Determine relative demersal fish biomass
• Identify possible locations of significant fish biomass outside current areas of commercial effort
Northern Demersal Scalefish Fishery: Acoustic Project

A single beam echo-sounder was attached to a fishing vessel to collect data at four frequencies to help map:

- Bathymetry
- Seafloor substrate (using backscatter)
- Water column biomass
Study Area – Depth from first trip (April 2012)

1 Week of data collection (locations blurred)
Study Area – Depth from all trips to date and still collecting...

18 months of data collection (locations blurred)
The Problem

Interpolation of single-beam echo sounder bathymetry towards development of a continuous bathymetry grid for the offshore Kimberley region

• Bathymetry estimates from SBES (single-beam echo sounder)
• Interpolation between tracks
• Compilation of multiple data sources for broad-scale grid
Background: Geostatistics

- Data demands for broad-scale observation and continuous datasets
- Geostatistics vs other estimators (Nearest neighbour, inverse distance weighting, or triangulated irregular networks)
- Surface Interpolation
 - Variogram modelling
 - Kriging
Methodology

- Exploratory data analysis
- Data transformation and filtering
- Variograms and interpolation
- Data comparison and compilation
- Error assessment
Methodology: Pre-Processing

- Exploratory data analysis, spatial statistics
- Trend surface fitting
- Model residuals
- Statistical modelling and normal distributions
Methodology: Pre-Processing

- Exploratory data analysis, spatial statistics
- Trend surface fitting
- Model residuals
- Statistical modelling and normal distributions
Methodology: Pre-Processing

- Exploratory data analysis, spatial statistics
- Trend surface fitting
- Model residuals
- Statistical modelling and normal distributions
Methodology: Interpolation

- Variogram modelling of residuals
- Kriging interpolation with variogram input
- Cokriging with GA 250m grid
Methodology: Bathymetry Grids
Methodology: Bathymetry Grids
Results
Direction

• Extend interpolation of bathymetry to other properties; sediment composition, substrate depth, and/or water column biomass
• Continuous collection of SBES to contribute to baseline mapping
• Trial of techniques across new geographic extents
Summary

• Use of acoustic observation for broad-scale monitoring of the seabed
• Challenges of interpolating sparse samples to a continuous surface
• Potential to apply techniques to various marine habitat variables
Questions?
Acknowledgements

Dr Robert Corner, Senior Lecturer,
Department of Spatial Sciences, Western Australian School of Mines

Dr Iain Parnum, Research Fellow,
Centre for Marine Science and Technology, Department of Imaging and Applied Physics

Dr Miles Parsons, Research Fellow,
Centre for Marine Science and Technology, Department of Imaging and Applied Physics

Dr Todd Robinson, Research Fellow,
Department of Spatial Sciences, Western Australian School of Mines

Geosciences Australia

Department of Fisheries & Fishing Vessel MV Carolina M