An economical subsea wet gas flow meter:
reliable well production solutions for a low cost environment

Subsea Controls Down Under
Perth, October 2016
What is a wet gas?

API RP17S – Recommended Practice for the Design & Operation of Subsea Multiphase Flow Meters

1.2.19 multiphase flow Flow of a composite fluid that includes natural gas, hydrocarbon liquids, water, and injected fluids, or any combination of these.

1.2.41 wet gas A subset of multiphase flow in which the dominant fluid is gas and in which there is a presence of some liquid.
Flow Map - Horizontal
Flow Map - Vertical
99.9% GVF

P = 40 Bara
Qg = 1800 m³/hr

GVF = 99.90%
WLR = 100%
99.5% GVF

P = 25 Bara
Qg = 1000 m3/hr

GVF = 99.47%
WLR = 30.0%
Why do we measure wet gas?

• Reservoir management
 • optimise production
 • obtain long term reservoir recovery
 • Detection of water breakthrough

• Production allocation
 • extremely important in the development of marginal fields
How should we measure it?
From ISO 5167:

\[Q_m = \frac{C}{\sqrt{1 - \beta^4}} \varepsilon \frac{\pi d^2}{4} \sqrt{2\rho \Delta P} \]
Wet Gas Correction:

\[Q_{gm} = \frac{Q_{gi}}{WGC} \] (for wet gas)

EVALUATING AND IMPROVING WET GAS CORRECTIONS FOR HORIZONTAL VENTURI METERS
Alistair Collins, Mark Tudge, Carol Wade (Solartron ISA)
COST EFFECTIVE INTELLIGENCE

DUALSTREAM 1 (ADVANCED)

- High Accuracy
- Low CAPEX
- Low OPEX
- Low Power
Pressure Profile
Pressure Loss Ratio

The ratio of the total differential pressure (DP_t) across the Venturi to the standard Venturi differential pressure (DP_v)

\[PLR = \frac{DP_t}{DP_v} \]

PLR used to quantify water content
Dualstream 1 (Advanced)

(Simplified Diagram)
PLR from industry

de Leeuw paper at 1997 NSFMW
Section 4.3 Venturi Pressure Loss Ratio

ASME MFC 19G-2008
Section 6.2.2 and Appendix J.2

ISO/TR 11583:2012
Section 6.4.5 Use of the Pressure Loss Ratio to determine X (Lockhart-Martinelli parameter)

ISO TR 12748:2015
Section 6.5.2 Differential pressure meter classical DP/permanent pressure loss wet gas meters

NSFMW 2015 - Impact of using ISO/TR 11583 for a Venturi Tube in 3-phase Wet Gas Conditions
Section 3.2 Correlation Developed for Determining the Wetness
Wet Gas Calibration
Wet Gas Calibration – PLR

Differing Flow Conditions

Amount of Liquid
Wet Gas Calibration – PLR

Suite of curves are used to form algorithm – calibration optimises for specific field conditions
Performance:

Gas Rate ± 2%

Water Rate ± 1 am3/h
Water Sensitivity ± 0.2 am3/h

‘Well management / flow assurance applications are defined by the need to track changes...Tracking the difference between measurements over a period of time, rather than the validity of an individual measurement, is of greatest concern.’

API RP 17S
“In deepwater areas, the cost of well intervention is a formidable barrier. A single intervention can cost many millions of dollars, and in many cases, the result is uncertain. There are no guarantees.”

Dick Ghiselin, Offshore Magazine, 7th October 2013
Redundancy vs Replacement

REDUNDANT INSTRUMENTS
- Redundant instruments online
- Ready to swap
- Multiple communications paths

REPLACEABLE INSTRUMENTS
- Replace electronics or pull tree?
- How much?!
- How long before it’s fully working again?
Long term stability

SST3010DP
• Based on Yokogawa DP Cells
• Full welded construction
• Accurate and Stable

Data from long term stability test
Water Accuracy vs. PVT Sensitivity

Shift on O/P Water Volume Flow (am3/h) for 5% shift in CGMR

Gas Mass Fraction

Water/Liquid Ratio

- 0.0-1.0
- 0.8-0.9
- 0.7-0.8
- 0.6-0.7
- 0.5-0.6
- 0.4-0.5
- 0.3-0.4
- 0.2-0.3
- 0.1-0.2
- 0.0-0.1
Venturi – Resilience to Erosion
Dualstream Diagnostics

The Diagnostic Pi (π)

Healthy Status

- THROAT DEBRIS
- WET GAS CORRECTION
- BLOCKED IMPULSE LINES
- SATURATED DP
- DRIFTING DP
- INCORRECTLY SPANNED DP
- VENTURI CD PIPE DIAMETER (D)
- THROAT DIAMETER (d)
- METER INCORRECTLY INSTALLED
- CALCULATION ERROR
- DP TRANSMITTER MALFUNCTION

Warning Status

- WET GAS CORRECTION
- BLOCKED IMPULSE LINES
- SATURATED DP
- DRIFTING DP
- INCORRECTLY SPANNED DP
- VENTURI CD PIPE DIAMETER (D)
- THROAT DIAMETER (d)
- METER INCORRECTLY INSTALLED
- CALCULATION ERROR
- DP TRANSMITTER MALFUNCTION

Alarm Status
Summary

Even in a low cost environment you can get valuable multiphase data for wet gas wells
THANK YOU – Any questions?

Subsea Controls Down Under
Perth, October 2016

Alan Downing
alan.downing@ametek.com