Subsea Internet of Things

Brendan Hyland
WFS Technologies
Subsea Controls Down Under
October 2016
Subsea Internet of Things

- Agenda

• About WFS Technologies
• Seatooth Technology
• What is the Subsea Internet of Things?
• Applications:
 – Asset Integrity
 – Flow Assurance
• Summary

Seatooth PipeLogger
- Smart, Wireless Pipeline Temperature Logger
About WFS Technologies

- **Background**

 - Founded Edinburgh, Scotland in 2003
 - Privately owned
 - Head office Edinburgh, Scotland
 - Sales/Projects offices in Houston, Vietnam
 - World leader in radio based subsea wireless automation
 - Seatooth radio technology developed in-house
 - >200 man-years of research
 - >7000 Seatooth products delivered
 - WFS Oil & Gas
 - Asset Integrity Solutions
 - Flow Assurance solutions
 - IRM
 - WFS Defense
 - Diver wireless Personal Area Networks (wPAN)
 - AUV communications and docking

WFS Headquarters, nr Edinburgh, Scotland

Seatooth Wireless Network
About WFS Technologies

- **Seatooth Technology**

Diagram:
- Propagation through Water-Air Boundary
- Radio finds path of least resistance

About WFS Technologies - Seatooth Technology

- **Seatooth: radio communications**
 - Media: water, water/air boundary, seabed, ice, metal
 - Attenuation is a function of frequency & conductivity
 - ≈ 55 dB/λ in seawater
 - Propagation velocity is a function of frequency:
 - ≈ 100x velocity of sound at 3kHz in seawater

- **Propagation loss through water/air boundary** ≈ 3 dB
- Unaffected by turbidity, biofouling, aeration, thermal layers, engine noise
- Ultra low power receive technology key to deployments of 10 years +
Subsea Wireless
- Comparison of options

- Complementary wireless technologies
 - Acoustic
 - Radio
 - optical

- There is no ‘silver bullet’
- Select technology that best matches application
- Future of subsea wireless is Hybrid

Pros

<table>
<thead>
<tr>
<th>Technology</th>
<th>Acoustic</th>
<th>RF</th>
<th>Optical</th>
</tr>
</thead>
</table>
| **Pros** | • Proven technology
 • Range: up to 20 km
 • Energy efficiency at longer ranges
 • Precision navigation | • Unaffected by water depth
 • Unaffected by turbidity/bubbles
 • Non-line-of-sight performance
 • Omni-directional
 • Rapid set-up
 • Low latency
 • Immune to acoustic noise
 • Immune to marine fouling
 • Up to 100 Mbps
 • Transmits underwater & water/air | • Ultra-high bandwidth
 • Compact
 • Low latency
 • Immune to acoustic & EMI noise |

| **Cons** | • Adversely affected by
 • Water attenuation
 • Ambient noise
 • Multi-path in shallow water
 • Unpredictable propagation
 • Limited bandwidth
 • High latency
 • Impact on marine life
 • Does not transmit underwater | • Limited range through water
 • Low energy efficiency at longer ranges
 • Susceptible to in-band EMI | • Susceptible to turbulence & particles
 • Marine fouling on lens faces
 • Line-of-sight
 • Needs tight alignment
 • Short range
 • Difficulty transmitting underwater |

Source: Subsea Wireless Group (SWiG), 2013
SWIG is an open standards JIP feeding into API 17F
What is the Subsea Internet of Things?

- **Subsea Internet of Things**: is a network of smart, wireless sensors and devices configured to provide performance, condition and diagnostic information.
What is the Subsea Internet of Things?

- Smart Devices

- Multi-parameter sensor
 - Asset Integrity: Temp, UT, CP, Vibration
 - Flow Assurance: Temp, Flow, Vibration
- Local data processing
- Local process model correction
- Intelligent power management
- Local power generation
What is the Subsea Internet of Things?

- Wireless

- Wireless = Hybrid incorporating wireless
 - Hard wired
 - Copper
 - Fibre optic
 - Wireless
 - Radio
 - Acoustic
 - Free space optics

- Select the most appropriate technology
 - Cost
 - Resilience
 - Performance
 - Flexibility
What is the Subsea Internet of Things?

- Information

- Smart devices process data to deliver information
 - derived values, control outputs, graphs, histograms,

- Information v data
 - **Data** are the facts or details from which **information** is derived. Individual pieces of data are rarely useful alone. For data to become information, data needs to be put into context.

- Why **Information**?
 - Reduced cost
 - Extended life
 - Increase resilience
 - Distributed control

Flowline Temperature

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Date/Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>13:00:00</td>
</tr>
<tr>
<td>31</td>
<td>14:00:00</td>
</tr>
<tr>
<td>31</td>
<td>15:00:00</td>
</tr>
<tr>
<td>31</td>
<td>16:00:00</td>
</tr>
<tr>
<td>31</td>
<td>17:00:00</td>
</tr>
<tr>
<td>31</td>
<td>18:00:00</td>
</tr>
<tr>
<td>31</td>
<td>19:00:00</td>
</tr>
<tr>
<td>31</td>
<td>20:00:00</td>
</tr>
<tr>
<td>31</td>
<td>21:00:00</td>
</tr>
<tr>
<td>31</td>
<td>22:00:00</td>
</tr>
<tr>
<td>31</td>
<td>23:00:00</td>
</tr>
<tr>
<td>31</td>
<td>00:00:00</td>
</tr>
<tr>
<td>31</td>
<td>01:00:00</td>
</tr>
<tr>
<td>31</td>
<td>02:00:00</td>
</tr>
<tr>
<td>31</td>
<td>03:00:00</td>
</tr>
<tr>
<td>33</td>
<td>04:00:00</td>
</tr>
</tbody>
</table>

Convert data to Information
Subsea Internet of Things
- Applications

• **Asset Integrity**
 – Field-wide Cathodic Protection (CP)
 – Pipe wall thickness (UT)
 – Crack (ACFM)
 – Vibration
 – Impressed Current (ICCP)
 – Flow induced pulsation (FLIP)
 – Riser fatigue
 – Completion fatigue
 – Mooring fatigue
 – Leak detection

• **Production Optimisation & Flow Assurance**
 – EOR water/gas injection
 – Hydrate/wax
 – Chemical injection
 – Slug management
Subsea Internet of Things
- Asset Integrity

CP Inspection Automation

- Reduce inspection costs
- Improve quality of information
- Flexibility to extend sensor network

→ extend interval between inspection
→ location, timeliness, reliability, frequency
→ subsea wireless SCADA
Subsea Internet of Things

- Asset Integrity

Pipeline Corrosion Monitoring with PIG

- Use PIG as ‘AUV on tram tracks’ to harvest data from remote sensors
- Seatooth PigTracker supports low bandwidth, 2-way comms through up to 50mm steel
- WFS solution
 - Smart sensor on outside of pipe takes periodic readings (eg UT, temp, flow, vibration)
 - Local data processing
 - Data harvested by PIG
- Benefits
 - Reduced OPEX: vessel time
 - Improved quality of information
 - Improved safety
Subsea Internet of Things
- Asset Integrity

FIV/VIV/Free-Span Monitoring

- Reduce data monitoring costs ➔ extend interval between battery swap-outs
- Improve reliability of data collection ➔ verify system performance without recovering logger
- Flexibility to extend sensor network ➔ subsea wireless SCADA
Subsea Internet of Things

- Flow Assurance

EOR Water/Gas Injection Control

- Increase production
- Extend reservoir life
- Solution
 - Retrofit wireless network of smart flow meters
 - Implement control strategy
Subsea Internet of Things
- Production Control

- Reduced CAPEX ➔ lower electrical load, reduced installation cost
- Increased reliability ➔ fewer connectors and jumpers
- Increased flexibility ➔ futureproof control system expansion
Summary

• Subsea Internet of Things
 – Hybrid architecture
 – Smart wireless sensors
 – Local data processing and control
 – Seamless extension of wireless through splash zone

• Benefits
 – Increase production
 – Reduce CAPEX
 – Reduce OPEX
Thank You

Brendan@wfs-tech.com
+44 845 862 1560