Generations of Subsea Control System - Challenges and Solutions
Subsea Controls Down Under, Perth, WA- Oct 2016, John S Løvås & Guna Settyanann
Contents

Generation of Control Systems
• Challenges
• Generations of Control Systems
 – Background and Key Futures of generations
 – Technology developments and advances utilized
 – Process improvements for a low volume market
 – Solutions and benefits and experiences gained
 – Upgrade solutions/ Lessons Learned
 – Obsolescence
 – New Solutions
Challenges- Developments

• Deeper developments
 - In 1947 the first offshore wells were drilled in 21 feet water depth
 - In 2016, 3,400 meters (11,156 feet) is recorded as world deepest well
 - Reserves are identified even below 14000 feet

• Artic developments

• Challenges
 - New Design
 - New qualifications
 - Higher cost
 - Longer lead time
Challenges - Government Regulations

- Seismic Requirements
- Environmental Requirements
- Country Specific Standards
- Certifications
- Local Contents
Challenges - Higher Speed and More Data

Higher Communication Speed and data rate needs increases

• More Sensors in XT and Manifold
• High accuracy Multiphase meters
• Higher/faster data for diagnostics/ Analysis
• Remote monitoring/Remote Diagnostics
• New Technologies
• Subsea processing
• Increased Safety functions
Challenges - Longer Tiebacks and Step Outs

- Longer Umbilical
- Long Step Out Wells
- Higher Power (EPU, Topside/Subsea Transformers, Connectors etc)
- Communication Technology (Fibre Optic, SRM, various flying leads)
- More Subsea Distribution Equipment's (UTH, SDU etc)
- Higher chemical injection rates (Bigger Couplers, MQC, Hoses etc)
- Bigger HPU (Pump size, Reservoir size, bleed timing, charging timing)
- Challenging Topology
Challenges - Technology Developments

New technology and equipment's are required for
• High Pressure and High Temperature
• Subsea Processing
• All Electric Solutions
• Interface Standardization
• Additional Functional Lines
• New Fluids
• Obsolescence
• Cost reduction
• Reliability
• Market Demand
Solutions - Generation of Control System

- Developed 4 Generations of Controls System together with:
 - MCS
 - SPCU
 - SCM (SEM)
 - SRM
 - Communication Modems
 - DCV’s
 - Software
 - Instruments
Solutions – SEM Generations

<table>
<thead>
<tr>
<th></th>
<th>100 – System</th>
<th>150 – System</th>
<th>200 – System</th>
<th>200e – System SEM600</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 13628-6 compliance.</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Communication</td>
<td>Signal on power 1.2kb/s</td>
<td>Signal on power 2.4kb/s</td>
<td>Signal on Power 33.6kb/s, Fiber 4Mbit/s</td>
<td>Signal on Power 234 -1.500 kb/s, Fiber 1Gbit/s</td>
</tr>
<tr>
<td>Protocol</td>
<td>Proprietary</td>
<td>Proprietary</td>
<td>Proprietary</td>
<td>Open architecture TCP/IP</td>
</tr>
<tr>
<td>Industry Standard Interface</td>
<td>4-20 mA only</td>
<td>4-20 mA only</td>
<td>4-20 mA, IWIS</td>
<td>IWIS & SIIS compatible MDIS Emerging</td>
</tr>
<tr>
<td>SIL rated solutions</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1 – 3</td>
</tr>
</tbody>
</table>
Solutions - Subsea Communication

- Multidrop communication on power cable
- Point to point fiber optical communication
- Subsea Router Module (SRM) with point to point Ethernet
- Subsea Router Module (SRM) “Topside repeated subsea”
Solution - Increasing Reliability

- Collection of Product Performance data, SCM Internal/External/House Keeping Data and Valve Signature,
- Real time condition monitoring of subsea equipment’s
- Early warning based on real time performance indicators
Challenges and Solution– Low Volume Market & Process Improvement

• Challenges
 – Low volume
 – Custom built products

• Solution
 – Flexible Standard designs
 – Configurable Products and system building blocks
 – Extensive product /component qualification
Generations of controls System – Upgrade Solution Subsea Electronic Module Upgrade

SEM is an improved SEM solution designed to extend the life of fields with SEM150 based SCM’s.

SEM is a drop-in solution for SEM150 that supports new sensor interfaces such as CAN bus and IWIS.

Topside changes are only needed if customer wants to enable additional functionality.

Upgrade open up for installation of a 200e system topside by activating the 200e functionality in the SEM615 for even further 'life of fields' - extensions.

SEM615 is a part of the field proven SEM600 series with significant improved reliability.
Generations of controls System – Upgrade Solutions Examples

Upgrade of a FMC 100/150 system

Original system
- No topside changes needed
- Original functionality
- Obsolescence challenges solved

Topside

Subsea

Existing topside equipment

FSK-150 modem

150 SEM

FSK-150 modem

MultiRange modem

FSK150 mode

615 SEM
615 HW
KS150 SW
Generations of controls System – Upgrade Solutions Examples

Original system

- MCS
- FSK-150 modem
- 150 SEM

Obsolescence challenges solved
Original functionality
No topside changes needed

Existing topside equipment

MultiRange modem
IWIS
Ethernet

MCS

- TPU KS200e
- MultiRange modem

Obsolescence challenges solved
Improved bandwidth.
IWIS and SIIS (CAN, Ethernet)
Challenges and Solution – Electrical connectors

Initial Subsea Control system used Inductive electrical couplers, which was a theoretically good solution for electrical connections for many reasons.

• Challenges
 – Loss because of tolerances
 – Not contamination tolerant
 – Sensitive from a operation point of view

• Solution
 – Moved to conductive electrical couplers when mature for Deepwater system.
 – Achieved more electrical circuits i.e. function
Challenges and Solution – Compensation System

Challenges:
- Hydraulic lock connector/valve
- Compensation system sizing/design.

Solution
- Improved Design of hydraulic connector and system
- Compensation system designed and sized to handle storage, intervention operational and life of field operation.
Challenges and Solution – Electric System

• Challenges
 – Electrical system actuator needs more power than a traditional subsea system.

• Solution
 – Battery used to integrate electrical actuator system in legacy system for retrofit functionality (choke / manifold)
 – Subsea Uninterrupted Power Supply for SIL safety systems
Challenges and Solution – System Performance Analysis

• Challenges
 – Complex subsea architecture

• Solution
 – Full scale Topology Test to verify complex configuration.
 – Up to 200 km electrical cable and 300 km fibre optical line for test available.
Obsolescence challenges and solution

- Form a historic point of view focus has not been Obsolescence management/planning
- The Joint Obsolescence Management Specification is a joint effort between several clients
- FMC has developed OM plans, global Work instruction and specification and master documents

Conclusions

FMC have firmly addressed the requirements of Specification and used sound Project Management principles to set in place a plan to achieve full compliance across all activities by 2015.

Generation of a GAP analysis and then auctioning and measuring success against this analysis is a good practice and will enable FMC control over implementing the RS.

This second SCR was a bit of “surprise” and FMC are to be congratulated on the actions taken and the obvious commitment to providing their customers (Operators) with a FMC capability to achieve the contractual requirements for Obsolescence Management.

Whilst it may be seen that there has been no noticeable improved delivery to the customer since the original SCR the organisation and processes that have been implemented and planned to be implemented will achieve compliance faster and more effectively than was evident from the first SCR.

FMC should be congratulated on their progress and commitment.
OM Specifications, various levels in value chain
Several levels of managing obsolescence -
Highest focus to most critical components

- Critical - Level 2
- Potential critical - Level 1
- Non-critical - Level 0

CDM
Most critical
"Level 2"
in TCE

FMC System
Generations FMC Subsea Electronics

MKII and III SCMs

200e includes scalable standard building blocks suitable for low functionality systems to large complex systems.

SEM 620 – 57.6 kbps - 1 Gbps
SEM 200 – 33.6 kbps - 4 Mbps
SEM 150 – 2400 bps
SEM 100 – 1200 bps

SEM 615

SEM 615 – 1.5 Mbps - 1 Gbps

200e includes scalable standard building blocks suitable for low functionality systems to large complex systems.
FMC Future – build on experience but..

- Change focus
- Simplify
- Eliminate waste
- Reduce size
- Reduce part count
- Remove scope
- Challenge requirements
- Question some truths
- Automate

- Listen
- Collaborate
- Innovate
- Be bold
Questions?
Thank You