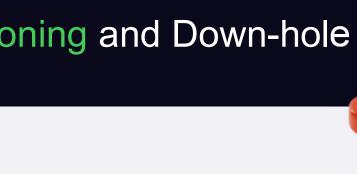


The Queens Award for Enterprise: Innovation 2019

# C-Kore: Fast Automated Subsea Testing

Greg Smith – General Manager

#### **C-Kore Applications**


The Queens Award for Enterprise: Innovation 2019

Subsea Tools to save Time & Money on:

Installation/Commissioning

**Fault-finding Operations** 

Decommissioning and Down-hole





Simplify Subsea Testing







200+ Units Deployed



35+ Different Customers



40+ Different Fields



25+ Assets Installed



50+ Faults Located in Fields





#### **C-Kore**

#### The Queens Award for Enterprise: Innovation 2019

#### **Subsea Testing Tools**

**Cable Monitor** 

Subsea TDR

**Sensor Monitor** 

Pressure Monitor

















Cable Monitor (IR & Continuity)

(IIX & Continuity)

Subsea TDR

Sensor Monitor

**Pressure Monitor** 



Siemens Tronic



Teledyne ODI







## Brains Bodies Cable Monitor

(IR & Continuity)

Subsea TDR

**Sensor Monitor** 

**Pressure Monitor** 





### **C-Kore Subsea Testing Tools**





Cable Monitor (IR & Continuity)

Subsea TDR

Sensor Monitor

**Pressure Monitor** 

#### **Bodies**







**Diver Mate** 







#### **Brains**

**Cable Monitor** 

(IR & Continuity)

Subsea TDR

**Sensor Monitor** 

**Pressure Monitor** 

#### **Bodies**







### **C-Kore Subsea Testing Tools**



#### **Brains**

Cable Monitor (IR & Continuity)

Subsea TDR

Sensor Monitor

**Pressure Monitor** 









**Brains** 

Cable Monitor (IR & Continuity)

Subsea TDR

Sensor Monitor

**Pressure Monitor** 

**Bodies** 







### **Cable Monitor Specification**

Insulation Resistance

Capacitance

R Continuity Resistance

S Shock & Vibration

Temperature

 $1k\Omega$  to  $10G\Omega$ 

1nF to 99uF

 $0\Omega$  to  $1M\Omega$ 

0 to ±200G (3 Axis)

-40 to 100°C





Simplify Subsea Testing



Asset installation with the Cable Monitor...





#### Setup

Test routine pre-programmed for simple subsea deployment

Connect directly to subsea equipment, no downlines required

Trigger measurement with light sensor, proximity sensor or schedule













Vessel performs lay


C-Kore measurement throughout





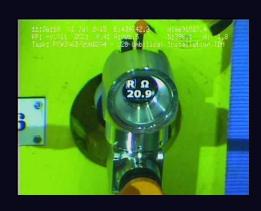






Subsea measurement (after lay and/or wet-storage)

Umbilical health proven




### **Cable Monitor Results**





Insulation Resistance



Continuity Resistance



Capacitance





#### **Insulation Resistance**



### **Cable Monitor Fault Types**



- IR Failures and changes
- CR Failures and changes
- Capacitance Confirmation and final value
- Shock Impacts and drops, transit and installation



### **Cable Monitor New Installation Summary**



#### fast, automated

Repeatable test routine. Removes operator delays, errors and differences.

#### sealed, accurate

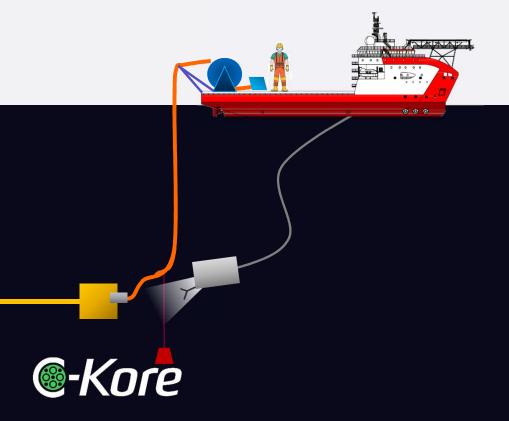
Stops weather and equipment change-over effects. Trustable results.

#### full traceability

Condition recorded from factory to subsea. Second end not deployed blind.



### **Cable Monitor Fault Finding**




Fault-finding with the Cable Monitor...





### **Deployment Traditional Method**



- 1. Vessel arrives in field
- 2. ROV launched
- 3. Downline deployed (move to safe distance)
- 4. ROV derigs and connects downline
- 5. Testing from back-deck

#### **Downline Issues:**

Slow deployment and permits required

Downline faults, attenuation, reflections

Back deck weather affects readings


Operator skill under time pressure

Quality of saved data





- 1. Vessel arrives in field
- 2. ROV launched
- 3. ROV connects and triggers C-Kore unit



#### **C-Kore Benefits:**

Fast deployment

No permits required (no high voltage)

Direct measurement

Automated and repeatable

Interactive result analysis

### **Fault Finding Strategies**

The Queens Award for Enterprise: Innovation 2019

- Most Probable Cause
- Divide and Conquer
- Disconnect and Rebuild

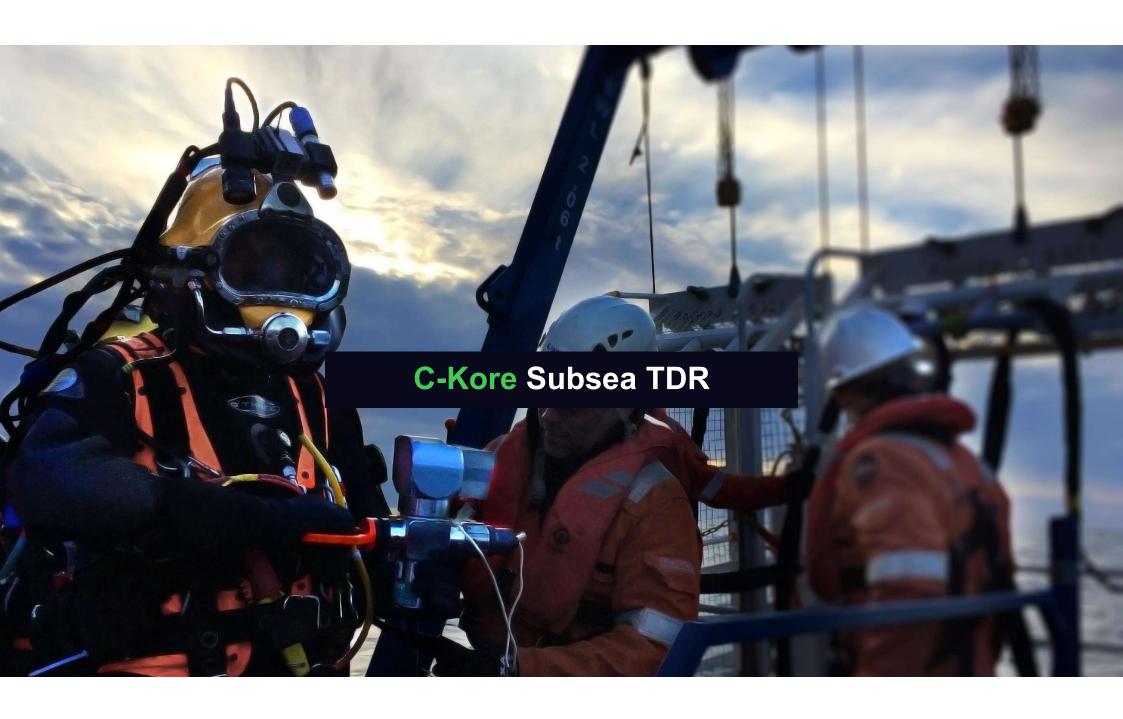


### **Cable Monitor Fault Finding Summary**



#### automated

Pre-programmed test routine removes the need for skilled TDR operator.


#### fast, liberated

No downline deployment / recovery time. No waiting for platform testing.

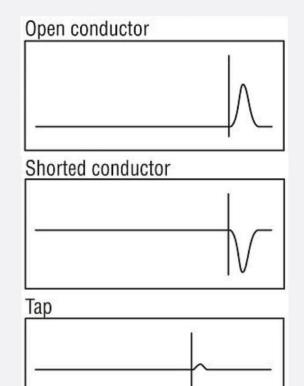
#### direct, reliable

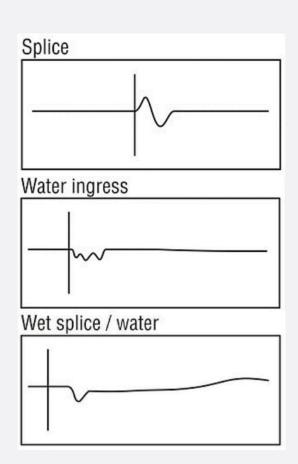
Measurements made directly subsea. No errors from impedance mismatches.

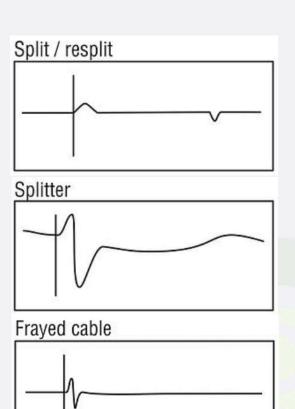




### **Subsea TDR Theory**




#### **Subsea TDR**

#### **Examples**







The Queens Award for

Enterprise: Innovation 2019



Simplify Subsea Testing

### **Subsea TDR Specification**

Discontinuity Location >20km Range\*

Location Precision 2nS (~15cm\*)

Pulse Width 10nS to 10uS (automated)

Measurement Gain -18dB to 56dB (automated)

Temperature, Shock & Vibration





The Queens Award for

Enterprise: Innovation 2019

### **Subsea TDR New Installation**



Asset installation with the Subsea TDR...



### **Subsea TDR New Installation**





#### Baseline

Take reference point after umbilical FAT at factory

Discover potential discontinuities due to umbilical termination

Baseline for post-install verification or future fault-finding



### **Subsea TDR Fault Finding**



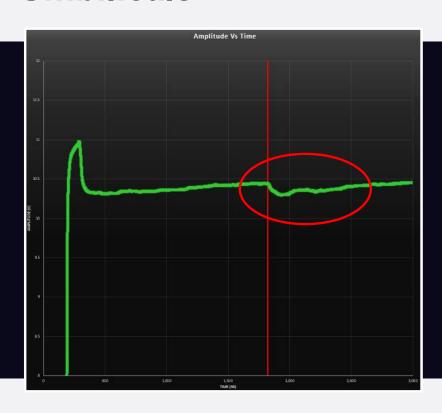
Fault-finding with the Subsea TDR...







#### **Umbilicals**


- Subsea TDR use follows Cable Monitor
- Discover exact discontinuity location

#### **Down Hole**

- Identify root cause of down hole failures
- Learn lessons for future installations



### Subsea TDR Umbilicals



#### **Fault measurement**

Measurement on cores with low IR

EFL to umbilical connection seen in impedance at beginning of graph

Discontinuity seen at 270m indicating fault location





### Subsea TDR Down Hole

C-Kore Cable **TDR**: For fault location

 $\mathsf{SCM}$ 

Tree

Penetrator

Hanger

Gauge



Simplify Subsea Testing

Multiple Results Report Graph ---- R4664 L1-2 1 uS 0dB 100Ω ---- R4664 L1-2 1 uS 6dB 100Ω ---- R4664 L1-2 1 uS 12dB 100Ω R4665 L1-2 1 uS 0dB 100Ω R4665 L1-2 1 uS 6dB 100Ω R4665 L1-2 1 uS 12dB 100Ω 20 All Pulse Widths ▼ All Gains ▼ Navigation: Multi Trace Result: 4661 Result: 4663 15 \_\_\_ Lines: 1-2 \_\_\_\_ 6 uS 6 dB \_\_\_\_\_ 1 uS 12 dB \_\_\_\_\_ 3 uS 12 dB \_\_\_\_\_ 6 uS 12 dB 10 \_\_\_\_6uS 0 dB --\_\_\_\_7 uS 6 dB ---\_\_\_3uS 6 dB Ampiltude (%) GuS 6 dB 1 uS 12 dB 3 uS 12 dB 6uS 12dB Select a maximum of 6 traces at a time Mode: Distance Change to Time VoP (%): 73 Cursors: **x2:** 1.1730 km **X1:** 0.0 m Shortcut: Ctrl+Shift+Left/Right Click -5 Difference: 1.1730 km C-Kore Interactive Smoothing: None \*\* Trace Viewer Zoom Options: -10 Drag: Zoom to Window Ctrl + Drag: Pan 500 1000 1500 2000 Distance (m) Export Screenshot Close



### **Pressure Monitor Specification**



P Absolute Pressure

Shock & Vibration

Temperature

0 to 1000bar (14,500psi)

0 to ±200G (3 Axis)

-40 to 100°C





## **Pressure Monitor Connectivity**



#### **Pressure Monitor**

- Standalone operation or
- Use Cable Monitor to display Results





### **Pressure Monitor New Installation**



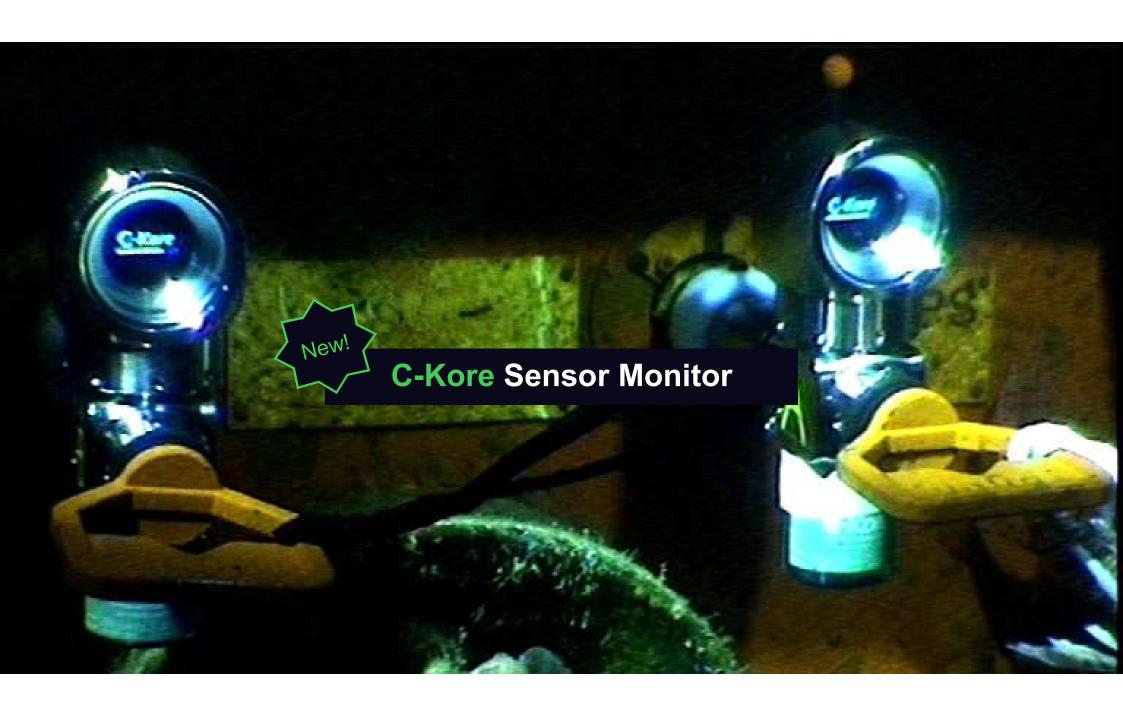
Asset installation with the Pressure Monitor...



#### Pressure Monitor New Installation






#### **Deployment**

Mount on hydraulic test plate

Replaces or complements analogue gauge, datalogs all results

Link to Cable Monitor for display





### **Sensor Monitor Applications**



Read Subsea Sensors

Construction, fault-finding & decommissioning campaigns

Ensure safe environment for divers

**Prevent** accidental release of hydrocarbons





# **Sensor Monitor Specification**

Current Sensors

V Voltage Sensors

Connection Modes

Display Units

Datalogging

0 to 20mA

0 to 20V

2, 3 & 4-wire modes

Programmable units

Every measurement



The Queens Award for



Simplify Subsea Testing



Save Time & Money on

Installation/Commissioning Operations

Fault-finding Campaigns

Down-hole Testing





Simplify Subsea Testing

The Queens Award for



The Queens Award for Enterprise: Innovation 2019

### Thank You

Any Questions?



Greg.Smith@C-Kore.com

+44 (0)1904 215161