Subsea Power – Enabling AUT
AUT 2019 - 23 October 2019

Darren Burrowes
CTO/BlueZone Group
AGENDA

THE NEED

LITHIUM ION

FUEL CELL

ALUMINIUM

CONCLUSION
SUBSEA RESIDENT AUV – THE NEED

• Rapid advances in miniaturisation
• An All Electric future?
• Reduced Through-Life Cost
ENABLING TECHNOLOGIES

• Navigation
• Communication
• Connection
• Energy
20-FT CONTAINER COMPARISON

<table>
<thead>
<tr>
<th></th>
<th>Energy</th>
<th>Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lithium-Ion</td>
<td>0.5MWh</td>
<td>30kW</td>
</tr>
<tr>
<td>Fuel Cell</td>
<td>0.6MWh</td>
<td>80kW</td>
</tr>
<tr>
<td>Aluminium-Air</td>
<td>10MWh</td>
<td>500kW</td>
</tr>
</tbody>
</table>

Saab Sabretooth
10kWh @ 3.3kW

Porsche Taycan
93.4kWh @ 270kW
LITHIUM ION

Lithium Ion Today
• Energy: 100kWh Power: 30+kW
• Voltage range 14.4V to 400+V
• Currents up to ~100A
• Design life up to 30 years

Advanced Light Metal Future
• Improved lithium-ion technology,
• New battery chemistries
• Lithium-air, lithium-sulphur and sodium-ion
LITHIUM ION

- Long-endurance lithium-ion batteries
- Australia's Attack Class submarines
- Safety issues

Japan Launches First Lithium-Ion Equipped Soryu-class Submarine

JS Oryu is the first Japanese diesel-electric submarine to feature lithium-ion battery technology.

By Ankit Panda
October 05, 2018

Image Credit: Kawasaki
AGENDA
THE NEED
LITHIUM ION
FUEL CELL
ALUMINIUM
CONCLUSION
DEEP SPACE TO DEEP OCEAN

The Challenges

DEEP SPACE
- Extreme temperatures
- Long lifetime
- Repair is not an option
- Corrosive conditions
- Structural load
- Process chain traceability

DEEP WATER
- Extreme temperatures/pressures
- Long lifetime
- Repair is impractical
- Corrosive conditions
- Structural load
- Process chain traceability
SUBSEA POWER NODE

• 1.5x1.4x1.4 skid at 810kg
• Long life >10,000 hours
• Reactant storage agnostic
• Compressed-gas
• TRL 9 commercially refillable
SUBSEA POWER NODE

- Cost decrease for energy increase
- Lower capital cost for energy > 600 kWh
- Unfuelled fuel cell systems are not required to meet special safety regulations
- Can operate at very low temperatures and have freeze-thaw cycle capability
- No “shelf-life” - degradation is based on hours of operation not date of manufacture
SUBSEA POWER NODE

Specifications

- Power: 16kW (Continuous)
- Voltage: 400 to 600 Vdc
- Grid balancing capable
- Mass Target: 3,370 kg
- Negative buoyant fuelled
- Positive buoyant empty
- Operating Depth: 3000m
Subsea operations with minimal ship support

- UAV surveying and mapping with persistent monitoring
- Enables both surface and subsea communication and broadcast
- Subsea micro-grid back-up power and stabilization
- Data can be transmitted to the node and either tethered to the surface or stored for retrieval during node recovery
AGENDA
THE NEED
LITHIUM ION
FUEL CELL
ALUMINIUM
CONCLUSION
MORE POWER ON THE SEABED

Source: Electric Power Research Institute
Metal of Choice: Aluminium

1. **Storing clean energy**
 - Mining Bauxite
 - Most abundant metal in earth’s crust
 - Charging
 - Alumina

2. **Transporting clean energy**
 - Discharging
 - Aluminum

3. **Discharging clean energy**
 - Recycling
 - 75% of all aluminum ever made is still in productive use
 - Applications
 - Fire retardant
 - Pharmaceutical
 - Aluminum hydroxide
ALUMINIUM – AIR BATTERY

- Air-Cathode separates Oxygen from air and catalyst allows reaction with water
- Aluminum Hydroxide Al(OH)₃ is produced at the anode generating heat and electricity

\[
4\text{Al} + 3\text{O}_2 + 6\text{H}_2\text{O} \rightarrow 4\text{Al(OH)}_3 + 2.71 \ \text{V}
\]

- Aqueous-electrolyte is continuously circulating in cells:
 - Flushing out by-products
 - Regulating heat
AL – AIR CONTAINERISED CONFIGURATIONS

1X20’ container 5760 kWh
Integral electrolyte tank (requires 5 reloads)

1X20’ container 7200 kWh
1X20’ electrolyte tank container

1X20’ container 10,000 kWh
Electrolyte produced onboard utilizing heat emitted from the chemical reaction
ALUMINIUM - WATER

- Ten-fold increase in energy density
- Inherently safer
- Chemically inert prior to activation
ALUMINIUM – WATER - SAFETY

• Does not generate hazards when exposed to extreme storage temperatures, low pressures, or fires

Summary and Conclusions

<table>
<thead>
<tr>
<th>Test</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Temperature (71°C)*</td>
<td>No hazards observed</td>
</tr>
<tr>
<td>Low Temperature (-51°C)*</td>
<td>No hazards observed</td>
</tr>
<tr>
<td>Low Pressure (8.3 psia)*</td>
<td>No hazards observed</td>
</tr>
<tr>
<td>Near-vacuum (fraction of a psia)</td>
<td>No hazards observed</td>
</tr>
<tr>
<td>Activity Verification</td>
<td>Cell shown to be electrochemically active. No hazards observed during inadvertent short, but H₂ release rate not measured.</td>
</tr>
<tr>
<td>Fire Exposure</td>
<td>Minimal burning of non-metallic components. No significant heat release beyond exposure fire.</td>
</tr>
</tbody>
</table>

*Test specifications from MIL-STD-810G
CONCLUSION

• Need: Subsea resident AUV & All-electric field
• Rapid technology development in energy storage
• Subsea applications coming soon

Japan Launches First Lithium-Ion Equipped Soryu-class Submarine

JS Oryu is the first Japanese diesel-electric submarine to feature lithium-ion battery technology.

By Ankit Panda
October 05, 2018

Image Credit: Kawasaki