ELECTRIC VALVE
Integrated solution

JV between ATV S.p.A and INNOVA A/S.

Subsea Controls Down Under, Perth, Oct. 2018
Eirik Ravnås
Goal

• Provide the best solutions for the customer
 • Cost
 • Reliability
 • Ease of integration
 • Predictability
 • Control
Why Electric?

• Marked exist
 • Extend range of subsea production systems (deeper, longer step-out)
 • All-electric subsea systems have the potential to reduce CAPEX and OPEX
 • Case studies report CAPEX saving in the range of 10-30%
 • Environmental benefits

• Electric systems are maturing
 • Ormen Lange Subsea Compression Pilot
 • Åsgard Subsea Compression
 • K5F All-electric tree

• Electric actuators are reliable
 • Equinor reports 8M running hours accumulated
 • No retrievals due to failures in actuator
Why Electric?

• Better regulation
 • Smooth, controlled motion
 • Position accuracy
 • Feedback

• Condition monitoring
 • Predictive / Planned maintenance
Challenges

• Concern of the unknown
• Standards written around existing solutions
• Need for system understanding across different disciplines
Challenges

Power infrastructure

EVERY WATT COUNTS!
Challenges

Local energy storage

Central energy storage

Direct powered
Challenges

• Power management raises “new” questions
 • Valve torque profile (Energy)
 • Operation time (Power)
 • Frequency of operation (Recharge time)

• Valve actuation times are high
 • Fail-safe (XT, HIPPS)
 • Gate valves
 • Large Ball valves
Challenges

• Transitional phase from hydraulic -> electric
 • Incremental approach (Risk reduction)

• Not taking advantage of new functionality
 • Valves and their configuration selected for hydraulic system
 • Valve forces and energy demand are high
 • Fail-safe functions sometimes specified due to removal of one hydraulic control line
Integrated electric valve

- Unique possibility for close integration of actuator and valve.
 - Power efficiency
 - One qualification
 - Targeted condition monitoring
 - Smaller physical size
 - Less weight
 - Less cost
Condition monitoring

• Actuator as a platform
 • Valve signature
 • Vibration
 • Valve internal leakage monitoring
 • Hydrate jamming
 • External load
 • Shutter position
 • Other pipeline parameters can be conveyed through electric actuator
Building blocks - modularity

- Battery/BMS
- Charger
- Motor drive
- Motor
- Gearbox/Screw

- Electric actuators
- Subsea HPUs
Case Study I
Example 5 1/8” - 15ksi Gate valve

Forces:
- Gate drag
- Ejection force
- Hydrostatic force
- Friction force stem seal

Spring failsafe:
- Springs are difficult to produce to required quality
- Springs are big
- Balanced valve cannot be used with spring failsafe! (XT’s)
Size/weight T.C Slab Gate 5 1/8” – 15ksi (3000m)

T.C. Gate Valve 5 1/8”-15k
Hydraulic Actuated
Spring Return Fail to Close
Weight = 4550 kg

T.C. Gate Valve 5 1/8”-15k
Mechanical Operated
Suitable for drop-in Electric Actuator
Fail As Is
Weight = 1400 kg

T.C. Gate Valve 5 1/8”-15k Mechanical Operated Double stem
Suitable for drop-in Electric Actuator for configuration Fail as Is, Fail Close and Fail Open (with battery)
Weight = 1850 kg
Energy efficiency

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Balanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuator</td>
<td>2.7 kNm</td>
<td>2.7kNm</td>
</tr>
<tr>
<td>Max torque</td>
<td>1900 Nm</td>
<td>1200 Nm</td>
</tr>
<tr>
<td>No. turns</td>
<td>26</td>
<td>8</td>
</tr>
<tr>
<td>Time to open</td>
<td>13 min 25 s</td>
<td>2 min 27 s</td>
</tr>
<tr>
<td>Time to close</td>
<td>7 min 28 s</td>
<td>1 min 49 s</td>
</tr>
<tr>
<td>Energy to open</td>
<td>266 kJ</td>
<td>20 kJ</td>
</tr>
<tr>
<td>Energy to close</td>
<td>92 kJ</td>
<td>10 kJ</td>
</tr>
<tr>
<td>Time to recharge (open)</td>
<td>2h 15 min</td>
<td>10 min</td>
</tr>
<tr>
<td>Time to recharge (close)</td>
<td>47 min</td>
<td>5 min</td>
</tr>
</tbody>
</table>

- **Implications:**
 - Less power demand
 - Frequent operation/ testing
Case Study II
22” ball valve

Standard (Worm gear):
- 62 turns

Alternative (Spur gear):
- 19 turns

SAME TORQUE!
Energy efficiency

<table>
<thead>
<tr>
<th></th>
<th>Standard</th>
<th>Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actuator</td>
<td>2.7 kNm</td>
<td>2.7 kNm</td>
</tr>
<tr>
<td>Max torque</td>
<td>1477 Nm</td>
<td>1477 Nm</td>
</tr>
<tr>
<td>No. turns</td>
<td>62</td>
<td>19</td>
</tr>
<tr>
<td>Time to open</td>
<td>23 min</td>
<td>7 min 8 s</td>
</tr>
<tr>
<td>Time to close</td>
<td>19 min</td>
<td>5 min 44 s</td>
</tr>
<tr>
<td>Energy to open</td>
<td>352 kJ</td>
<td>108 kJ</td>
</tr>
<tr>
<td>Energy to close</td>
<td>262 kJ</td>
<td>80 kJ</td>
</tr>
<tr>
<td>Time to recharge (open)</td>
<td>2h 58 min</td>
<td>54 min</td>
</tr>
<tr>
<td>Time to recharge (close)</td>
<td>2h 12 min</td>
<td>40 min</td>
</tr>
</tbody>
</table>

- **Implications:**
 - Less power demand
 - Frequent operation/ testing
Integrated electric actuator

• Power interfaces:
 • SIIS L2/L3
 • 400 VAC
 • 400 VDC

• Communication interfaces:
 • SIIS L2
 • Modbus RTU
 • SIIS L3

• Control system redundancy
 • Single
 • Dual
Conclusion

• Energy efficiency is essential

• “Smart Valve” enables predictive maintenance
• Integrated electric valve is the way to accomplish this
Questions?