Subsea Down Under 2018

IoT and the Future of Subsea Controls

David Walker
Chief Engineer
Yokogawa Australia

Oct 2018
1. Overview of IoT Enabling Technologies
2. IoT Devices and Communications
3. Edge Computing
4. Analytics and Cloud Computing
5. Challenges and Benefits
Overview of IoT Enabling Technologies
Internet of Things

The Industrial Internet of Things (IIoT) refers to the application of IoT within an industrial environment.

The Internet of Things (IoT), is the network of physical objects or "things" embedded with electronics, software, sensors, and connectivity to enable objects to collect and exchange data.

IIoT Technologies:
- Edge Computing
- Cloud Computing
- Open Communications
IloT Use Cases

- Remote monitoring
- Energy efficiency
- Asset reliability
- Business model transformation
- Production visibility
- Quality improvement
- Asset and material tracking
- Internet enabled products
- Traceability and serialization
- Customer access to information
- Improving safety
- Supplier visibility
- Improving environmental performance
IloT Technologies:
- Edge Computing
Edge Computing

- **Intelligent Sensors**
 - Device diagnostics
 - Control capability

- **Computing devices in the field**
 - Enables raw data processing
 - Distribution of controls

- **Subsea Applications:**
 - Distributed Controls
 - Optical Fibre Data Analytics
 - Vibration Data Analytics

Edge computing allows data from internet of things devices to be **analyzed at the edge of the network** before being sent to a data center or cloud.
IoT Devices

IoT Sensor – a networked sensor with local processing to provide a high level of information

- Enabled by small, high speed, low power microprocessors
- Now complex processing available at the sensor

Applications

- Fibre Optic Sensing Technologies (Time Domain Reflectometry)
- Vibration Sensing and Analysis (Fast Fourier Transforms)
- Corrosion Sensing and Analysis (Magnetic flux analysis)
IoT Devices – Fibre Optic Sensing Technologies

- Fibre Optic Sensing Technologies
 - TDR (time domain reflectometry) calculations at the sensor
 - Accurate Temperature and Pressure/Stress Measurement
 - Run optical fibre up to 50 km with measurement every 1m

- Subsea Applications
 - Leak detection, hot spots and stress on pipelines & manifolds
 - Downhole pressure and temperature monitoring
Vibration Sensing Technologies

- Fast Fourier Transforms to analyse vibration data
- Different waveforms represent different issues:
 - Bearings
 - Cavitation
 - Lube oil contaminants
 - Impeller damage

Subsea Applications

- Compressor monitoring
 - Enables predictive maintenance
 - Early warning of compressor problems
Subsea Controls

- **Edge Computer Attributes**
 - Large processing capacity
 - Low power consumption & heat load
 - Wide temperature range
 - Lightweight, real-time operating system
 - Built-in applications and APIs for fast deployment
 - IEC61131-3 control programming and libraries
 - Web services
 - I/O interfacing
 - SQL database
 - FFT libraries
Subsea Controls

- **Edge Computer for Subsea Controls:**
 - Devolved MCS controls to the edge (SCM)
 - Interlocks, sequences and data acquisition/logging
 - Network of controllers that connect to each other for integrated controls
 - Real-time analytics
 - Vibration
 - Cavitation
 - Corrosion
IOT Technologies:
- IoT Communications
Communications

Wireless Communications

- Why wireless?
 - No physical connection required to device
 - Reduces installation cost
 - No “wet mate” connection, reducing incidence of leaks
 - Requires long battery life (10+ years) to be viable

- Types:
 - Radio Telemetry
 - Sound (Sonar)
 - Light
Radio telemetry

- 50m maximum range in shallow water
- Bluetooth technologies now being utilized (Seatooth by WFS)
- 5000 Bluetooth devices already in subsea applications
- Can travel from above sea to subsea

Subsea Applications

- Wireless repeater at manifold or wellhead. All sensors on manifold/wellhead are wireless.
- ROVs & AUVs collect data from sensors without requiring physical connection
Communications

- MQTT – sensor level communications

 - Lightweight protocol designed for sensors

 - Publisher/Subscriber type (rather than polling)
 - Device sends data when there is data to be sent
 - A client subscribes to receive published messages from a sensor

 - Provides interoperability between devices and users
Communications

- OPC UA – control and information level communications
 - Significant advancement on traditional OPC
 - Platform independent
 - Object based (XML)
 - Allows vendor-independent integration

- Subsea Applications
 - MDIS subsea controls interface
MDIS – MCS DCS Interface Standard

- Based on OPC UA
- Specifies object models relevant to subsea industry
- Any subsea system can connect to any topsides system
- Field device exists as an object model throughout the system

Choke Valve Object

- Valve position
- Enabled flag
- Fault status
- Interlocks
- Permissives
- Commands
IIoT Technologies:
- Analytics and Cloud Computing
Cloud Computing

- All computer infrastructure on the internet
- Pay for what you use
- Unlimited storage and processing capability
- Access to high-powered analytics
Cloud Computing

Data Lakes

- Massive data storage
- Across multiple locations
- From different users and devices
Data Analytics

- Converts data to information ... and information to knowledge
- Analyses large amounts of data and data profiles
- Correlates different types of data and information

Platform providers

- Microsoft Azure
- Google Analytics
- Amazon AWS
Cloud based modelling

- Subsea Applications
 - Model well performance
 - Knowledge based system based on multiple data sources
 - Compare against actual
 - Predict well life
 - Identify areas for optimisation
Example of a closed loop cloud-based system
Challenges and Benefits
IT/OT Convergence – Different Priorities

KPIs

- Cybersecurity
- Risk Reduction
- Cost Savings
- Data Visibility
- Overall Equipment Effectiveness
- Product Quality
- Uptime
- Safety

IT & OT
Benefits

- Improved asset management
- Greater insight into well performance
- Better integration between systems and information
- Wireless – fewer subsea connections
- Improved reliability
- Opportunities for optimisation