Planned Obsolescence, ‘MidLife’ Updates & Next generation

Subsea Controls Down Under, Perth, WA- Oct 2018, John S Løvås

October 2018 – Perth
Contents

Planned Obsolescence, ‘MidLife’ upgrades & Next generation

• **Controls Midlife Upgrades**
 • Challenges and solution
 • SCM /SEM Generations
 • Midlife Upgrade Solutions
 • Obsolescence Management

• **Next Generation**
 • Next generation, why
 • Project advantages - Operational phase
 • Technology developments
 • Process improvements for a low volume market
Midlife upgrades – Challenges and solution

Challenges & solution

- Cost
- Technology
- Interfaces
- Coexisting
- Collaboration
- Obsolescence

TechnipFMC
Midlife upgrades – Challenges and solution

- **Midlife control system upgrades or change out** are driven by:
 - Product obsolescence
 - New functionality/technology for product optimization
 - Reliability or technical operational challenges
 - Governmental requirement changes.
 - Field life time extension that drives monitoring functionality
 - Large scale control system upgrades

- Challenge and solution is to have a safe and painless transition during midlife upgrade
Challenges and Solution – Case

Retrofit manual valve in existing systems with electrical actuator to solve operational changes in existing fields

Challenges

• Electrical system actuator needs more power than a traditional subsea control system.

Solution

• Battery used to integrate electrical actuator system in legacy system for retrofit functionality.(choke /manifold)
• Subsea Uninterrupted Power Supply for SIL safety systems for safety critical retrofit application
Generation of Control System

- Since 1985 developed 5 Generations of Controls System together with
 - MCS
 - SPCU
 - SCM (SEM)
 - SRM
 - Communication Modems
 - DCV’s
 - Software
 - Instruments

TechnipFMC
Solutions – SEM Generations

<table>
<thead>
<tr>
<th>Year of Production</th>
<th>SEM 100</th>
<th>SEM 150</th>
<th>SEM 200</th>
<th>SEM600</th>
<th>SEM 800</th>
</tr>
</thead>
<tbody>
<tr>
<td>1995-2009</td>
<td>2001-2006</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007→</td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>API 17F FOURTH EDITION</td>
</tr>
<tr>
<td>No</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>Signal on Power 234 -1.500 kb/s.</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Open architecture TCP/IP</td>
</tr>
<tr>
<td>Protocol</td>
<td>Proprietary</td>
<td>Proprietary</td>
<td>Proprietary</td>
<td>Open architecture TCP/IP</td>
<td>Open architecture TCP/IP</td>
</tr>
<tr>
<td>Industry Standard Interface</td>
<td>4-20 mA only</td>
<td>4-20 mA & Serial</td>
<td>4-20 mA, IWIS</td>
<td>IWIS & SIIS compatible MDIS Emerging</td>
<td>IWIS & SIIS compatible MDIS compatible</td>
</tr>
<tr>
<td>SIL rated solutions</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SEM Generations

- **SEM 100**: 1985-1995, No API 17F compliance, Proprietary Protocol, 4-20 mA only, SIL rated solutions 1.
- **SEM 200**: 2001-2006, Yes API 17F compliance, Proprietary Protocol, 4-20 mA, IWIS, SIL rated solutions 1.
Upgrade Solution Subsea Electronic Module - Case

• TFMC SEM 600 is an improved solution designed to extend the life of fields with SEM legacy based SCM's
• SEM is a drop-in solution for SEM150/100 that supports new sensor interfaces such as CAN bus and IWIS.
• Topside changes are only needed if customer wants to enable additional functionality.
• Upgrade opens up for installation of a 200e system topside by activating the 200e functionality in the SEM615.
• SEM615 is a part of the field proven SEM600 series with significant improved reliability.
• Upgrade have been done since 2012 with good track record.
Upgrade Solution Topside Power and Communication - Case

- TFMC latest SPCU design is an improved solution designed to extend life of fields and standardize.
- MCS Changes can be done in phase and are only needed if customer wants to enable additional functionality.
- Upgrade opens up for enabling of a 200e/800 system by activating the 200e/800 functionality in the SPCU for further 'life of fields'-extensions/upgrades.
- Cabinet supports improved conditioning monitoring and latest generation umbilical monitoring systems.
- SPCU Upgrade installed and proven in use since 2017.
Remote housekeeping and control available on FMC722 or Modbus TCP/IP.

Local housekeeping and control available on touch screen.

MDIS ready hardware.

Dual Redundancy.

KS200e, KS200/150, KS150 & KS100 system & modems supported.

Adjustable output voltage

Link separation on power line >80dB.
Upgrade Solutions Examples

Upgrade of a TFMC 100/150 system

Original system

Existing topside equipment

Obsolescence challenges solved

Original functionality

No topside changes needed
Midlife Upgrade Solution

Existing topside equipment

150 SEM
FSK-150 modem

MCS

615 SEM
615 HW
KS150 SW
MultiRange modem

Existing system

Obsolescence challenges solved
Original functionality
No topside changes needed

Improved bandwidth.
IWIS and SIIS (CAN, Ethernet)
Upgrade solution Woodside Angel project

System advantages:
- Open architecture using IP communication
- Advanced sensor could be connected. SIIS/Ethernet.
- Higher bandwidth after converting
- Standardized topside interface 722
System Performance Analysis

• Full scale Topology Test to verify complex configuration and coexisting of new and old modem systems.

• Up to 200 km electrical cable and 300 km fibre optical line for test available.

• New equipment can improve production and reliability on existing installation.

• Important to assure safe and painless transition during upgrade.
Obsolescence Management

- Form a historic point of view focus has not been Obsolescence management/planning
- The Joint Obsolescence Management Specification is a joint effort between several clients
- TFMC has developed OM plans, global Work instruction and specification and master documents to be complying with API 17F

Conclusions

FMC have firmly addressed the requirements of Specification and used sound Project Management principles to set in place a plan to achieve full compliance across all activities by 2015.

Generation of a GAP analysis and then auctioning and measuring success against this analysis is a good practice and will enable FMC control over implementing the RS.

This second SCR was a bit of “surprise” and FMC are to be congratulated on the actions taken and the obvious commitment to providing their customers (Operators) with a FMC capability to achieve the contractual requirements for Obsolescence Management.

Whilst it may be seen that there has been no noticeable improved delivery to the customer since the original SCR the organisation and processes that have been implemented and planned to be implemented will achieve compliance faster and more effectively than was evident from the first SCR.

FMC should be congratulated on their progress and commitment.
OM Specifications, various levels in value chain
Several levels of managing obsolescence -
Highest focus to most critical components

TFMC System

- Most critical “Level 2” in part system
- Critical - Level 2
- Potential critical - Level 1
- Non-critical - Level 0
Next generation controls introduction
Next Generation - Why

- Current generation has been around since early 2005
- Market is changing
 - More open architecture
 - Increased flexibility
 - Reduced downtime, improved availability
- Increased standardization and supplier led solution
- Cost efficiency
- Improved modularity
- Identified areas for improvement on components
- Improved assembly and test
Modern advantages

- Electronics and electrical systems have become smaller and more reliable
- Hardware being replaced by software
- Modern materials save weight
- Modern IT solutions enable information sharing and improved data handling
- Smaller, light weight modules
- Increased use of COTS elements
 - Improved obsolescence handling
 - Standardized interfaces
Chose from Pre-configured product family

Design for Manufacture (LEAN, design thinking, cross functional)

Automated coding and documentation

Automated testing
Project advantages - Operational phase

- Reliability
 - Concepts and technical solutions based on 30 years global experience married with industrial trends
 - Minimum 30 year lifetime to be verified by accelerated life testing
 - Testing to destruction to screen extreme limits of components

- Flexibility
 - Allows re-configuration without retrieving equipment
 - Add functionality as you need it
 - 1+n levels of redundancy
 - Allows hot-swap of equipment
 - Simpler retrievability
 - Components prepared for all electric transition
New technology and equipment's are required for:

- High Pressure and High Temperature
- Subsea Processing
- All Electric Solutions
- Interface Standardization
- Additional Functionality
- New Fluids

- Obsolescence
- Cost reduction
- Reliability
- Market Demand
Conclusion & Summary:

Challenges today and yesterday
• Low volume Market
• Customer specific requirement.
• Custom built products

Solution
• Flexible Standard designs
• Configurable Products and system building blocks
• Standardized production processes
• Extensive product /component qualification
• Focus on obsolescence
• Design for optimal MMR performance
Questions?
Thank You