NEW SUBSEA FLUID TECHNOLOGIES ENABLE SUCCESS IN LONG OFFSET GAS

Sam Johns, Chris Morrissey
Castrol Global Marine & Energy
Subsea Controls Down Under, Perth – 24th October 2018
New subsea fluid technologies enable success in long offset gas

- Context
- The challenge of new operational conditions
- Managing gas hydrate risk through technology
- New barrier fluid supports subsea compression
- Summary and key learnings
The focus on offshore gas

- Production predicted to triple over the coming years, to around 16,000 bcf/d by 2025*
- Top ten countries in the world hold over 96%, over 200 trillion cubic feet (tcf) of all remaining reserves*
- Field development typically through use of floater, increasing use of long tie back to shore or by FLNG
- New subsea compression technology will boost production and enable new possibilities

Operator requirements

- Cost effective solutions
- Uptime and cash flow assurance
- Operational efficiencies and long equipment life
- Local environmental compliance

New operational conditions

Fluid System Challenges

- Contamination from water and gas
- Higher pressures - deep water/reservoirs
- Long offsets – managing system response
- Environment – compliance with local legislation

Deepwater up to 3000m
- Pressure head
- Intervention

Electric power for compressors and operation of some valves

High line pressures and presence of gas

Compressor lubrication and control

Environmental performance

Long tie back to shore
Risk of hydrate blockage in hydraulic lines

1. Gas enters hydraulic system via SSSV actuator; when valve closed pressure delta across seals (exposed to well bore gas pressure)

2. Gas migrates upwards along HP hydraulic line towards tree

3. Gas then sits in cold control line between penetrator and SCM

4. On re-applying pressure to open SSSV, gas is now exposed to high pressure, seabed temperature and water contained in fluid; risk of hydrate formation and line blockage = failure to open
Gas Hydrates

WHAT ARE THEY?
- Gas hydrates are ice-like crystalline molecular complexes
- They form under pressure from mixtures of water and suitably sized 'guest' gas molecules.
- Gas hydrates will form even at temperatures well above the melting point of water ice.
- The gas composition has a significant effect on the conditions under which hydrates will form.

HOW CAN YOU ASSESS THE RISK?
- Generate hydrate curves by exposing the control fluid containing methane gas to varying temperatures and pressures.
- Algorithms can be used to modify the curve for the actual gas composition for a specific well.
- The presence of hydrocarbons with molecular weight higher than methane moves the dissociation curve to the right.

![Diagram of hydrate formation and dissociation curves](image)

Note: Please don't do this!
Water-based control fluids rely on (typically) ethylene glycol to prevent freezing.

Ethylene glycol is a thermodynamic hydrate inhibitor.

Thermodynamic inhibitors shift the hydrate equilibrium conditions towards lower temperatures and higher pressures.

EXAMPLE 1
Deepwater Gas – 1000m
Pure methane
Seabed temp = 13°C
System pressure = 10K psi
Line pressure = Head + System

EXAMPLE 2
Deepwater Gas – 1500m
Pure methane
Seabed temp = 4°C
System pressure = 10K psi
Line pressure = Head + System

EXAMPLE 2 (New Gas Comp)
Deepwater Gas – 1500m
90% methane
Seabed temp = 4°C
System pressure = 10K psi
Line pressure = Head + System
Seabed temperatures are driven by ocean currents and density gradients.

In deep water seabed temperatures average 2.7°C (33.3°F), and can be as low as -1°C (30.2°F).

Low seabed temperatures can occur in shallow water in cold climates such as the arctic.

In enclosed bodies of water such as the Mediterranean, deep doesn’t always mean cold.
Risk Mitigation

Early recognition of hydrate risk is essential to minimise impact on costs and schedule

FLUID SOLUTIONS

- Most readily-implemented option is to select a fluid with hydrate-inhibiting characteristics...
- An aqueous fluid such as Castrol Transqua HC10 with enhanced hydrate inhibition characteristics can be utilised
- A non-aqueous fluid such as Castrol Brayco Micronic SV3 can be utilised – this removes the water component from the hydrate equation

HARDWARE SOLUTIONS

- Can be introduced if technically feasible
- Eliminated gas leak path by using a SSSV design with complete isolation between well bore and hydraulics
- Reduce the HP system pressure if sufficient design headroom or through use of a “dome-loaded” SSSV
- Seabed temperature is fixed, but trace heating of the exposed control line can be introduced.
- Minimise contamination with seawater or completion fluid ingress during SSSV installation
New barrier fluid for subsea compressors

Subsea Compression Challenges

- Putting complex and sensitive rotating equipment on the seabed
- High power output, shaft speeds and operating temperatures puts strain on lubricant, bearings and mechanical seals
- Environmental concerns drive need for lubricants with reduced environmental impact
- Long term commitment for product support
Barrier fluid is the life blood of the compressor system

- Supplied from surface through an umbilical (Fluids + power)
- Circulates within unit to perform key functions
- Is critical to reliable operation and maximum output
Fluid Development

Fluid was co-engineered in collaboration with key equipment OEM

Water tolerance
- No degradation
- Ability to be dried

Electrical Insulation
- Breakdown Voltage >20KV (IEC 60156 Test)

Thermal stability
- 3 month stability test at 200°C+
- Stable TAN, no deposits

Viscosity
- Low to reduce shear at high speed
 - (5Cst @40°C Typical)

Materials Compatibility
- Motor windings
- Insulation resins
- Polymers

Mechanical Face Seal Performance
- Dynamic test on test rig
- High Peak Temperatures
- No deposits, stable leakage

Environmental Performance
- OSPAR Testing
- Toxicity, Bioaccumulation
- Biodegradation

KEY DEVELOPMENT CHALLENGES
- Selection of components to meet environmental needs
- Mechanical seal face cleanliness and controlled leakage
- Performance verification challenges – rig testing
- Changing technical requirements and specifications
FINAL FORMULATION - Brayco Micronic SBF ES

New oil tailored for Subsea Compressors with no technical compromise

ENVIRONMENTALLY RESPONSIBLE
• Improved environmental performance in comparison with conventional mineral oil products
• Biodegradable base oil technology

ENSURING RELIABILITY
• Extensive stress testing and qualified to TRL5
• Back compatibility with existing fluids

MAXIMISING PERFORMANCE
• Highly stable synthetic formulation
• Withstands breakdown under high loads and temperatures
Summary

Fluids and lubricants are the life blood of subsea production and processing systems. Careful selection in collaboration with all stakeholders supports the monetisation of new gas opportunities

Key Learnings

- Deepwater and long offset gas projects present new field conditions which require careful assessment
- Early appraisal of hydrate risk and selection of potential solutions can avoid expensive system reworks and project delays
- Correct control fluid selection can mitigate the risk of line blockages, but accurate data on field conditions and gas composition is essential
- New dedicated barrier fluid technology for subsea compressors presents reduced environmental risk and increased performance